Bond Energy

D

1 Which equation represents the bond enthalpy for the H-F bond?

 $A \qquad HF_{(g)} \, \rightarrow \, H_{(g)} \, + \, F_{(g)}$

 $B \qquad \quad HF_{(g)} \, \to \, {}^{1}\!\!/_{\!2} H_{2(g)} \, + \, {}^{1}\!\!/_{\!2} F_{2(g)}$

 $C HF_{(aq)} \rightarrow H^{+}_{(aq)} + F^{-}_{(aq)}$

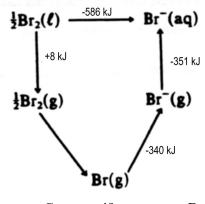
 $HF_{(g)} \to H^{+}_{(g)} + F^{-}_{(g)}$

2 Some bond energies are as follows:

Bond	Bond Enthalpy / kJ mol ⁻¹
C-C	347
C=C	613
С-Н	416
Н-Н	437

What is the change in enthalpy for the following chemical reaction?

$$CH_2=CHCH_2CH_{3(g)} + H_{2(g)} \rightarrow CH_3CH_2CH_2CH_{3(g)}$$


A -395 kJ mol⁻¹

B -129 kJ mol⁻¹

C 129 kJ mol⁻¹

D 395 kJ mol⁻¹

3 In the energy cycle shown below, what is the value in kJ mol⁻¹ for the molar bond enthalpy of bromine?

A +194

В

+97

C +49

D +57

4 The reaction between hydrogen and bromine occurs with the release of 107 kJ of energy as shown below:

$$H_{2(g)} + Br_{2(g)} \rightarrow 2HBr_{(g)}$$

$$\Delta H = -107 \text{ kJ}$$

Bond	Bond energy / kJ mol ⁻¹
Н-Н	436
Br-Br	193

What is the H-Br bond energy in kJ mol⁻¹?

A 261

В

368

C 422

D 522

Consider the following reaction: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \Delta H^{\bullet} = ?$

Bond enthalpies (in kJ mol-1) involved in the reaction are

Which calculation will give the value of ΔH° ?

N≡N	X
Н-Н	у
N-H	Z

A. x + 3y - 6z B.

6z - x + 3y

C. x-3y+6z

D. x + 3y - 2z

- 6 What energy changes occur when chemical bonds are formed and broken?
 - A. Energy is absorbed when bonds are formed and when they are broken.
 - B. Energy is released when bonds are formed and when they are broken.
 - C. Energy is absorbed when bonds are formed and released when they are broken.
 - D. Energy is released when bonds are formed and absorbed when they are broken.
- 7 Hydrogen cyanide can react with hydrogen to produce methylamine:

Bond Energy

$$HCN_{(g)} \ + \ 2H_{2(g)} \ \rightarrow \ H_3CNH_{2(g)}$$

(a) Draw the complete dot cross structures for HCN, H_2 and H_3CNH_2 and show all the valence electrons.

[3]

(b) From a consideration of the appropriate bond energies (enthalpies) below, calculate the enthalpy change, ΔH , for the reaction of hydrogen cyanide with hydrogen to produce methylamine. Some bond energies are:

Bond	kJ mol ⁻¹
С-Н	414
C-N	293
Н-Н	435
C=N	616
N-H	389
C≡N	879

(c) Also calculate ΔH for the reaction above using enthalpies of formation [3]

Compound	$\Delta H_{\rm f}$ / kJ mol ⁻¹
$HCN_{(g)}$	130.5
$H_3CNH_{2(g)}$	-28

(d)	Account for the fact that the values obtained in parts (b) and (c) are different.	[2]